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The following is a discussion of the heal transfer caused by 
radialion between Iwo bodies of different temperatures, one 
of them entirely surrounding the other.

In the first part of the article we make some simplifying 
assumptions often allowed for technical surfaces (later on we 
are going to discuss the significance of the most important among 
them) :

(1) I'he temperature-radiation obeys the cosine emission law.
(2) 'I'he surfaces of the bodies are reflecting according to the 

cosine law of reflection (completely diffuse reflection). The 
bodies are opaque.

(3) I'he reflectivity is independent of temperature and wave
length. According to Kirchhoff’s law this means that the 
emitted temperalure-radiation obeys Stefan-Boltzmann’s law.

(4) 'I'he inner surface is everywhere convex and the outer one 
is everywhere concave.

(5) 'I'he temperature is constant on each body.

I'he energy emitted in unit of lime from the inner body is 
A1c1ï’f, where Aj is the area of the surface, cx the “radiation
constant” and the absolute temperature of the body. If the 
surroundings are non-reflecting (absolutely black) the energy 
received and absorbed by the inner body in unit of time will 
be where T.¿ is the absolute temperature of the sur
roundings. Hence, the net loss of energy from the inner body 
will be

H = A^fTÍ-TÍ). (1)

I'his formula is often used in practical calculations. It is only 
valid if the radiation emitted from the inner body and reab
sorbed after reflection from the surroundings can be neglected.

1*
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If the reflected radiation is not vanishingly small, the loss of 
energy is less than given by (1). Christiansen1 arrived at the
following formula:

H AlC1{T\-T^ C2)

Index 2 refers to the outer surface; c0 is the radiation-constant 
for a black body (Stefan’s constant).

Clausing2 and Saunders3 have shown, that (2) is not always 
correct; H also to some extent depends on the form and mutual 
position of the two surfaces. Saunders has shown how to make 
corrections for this dependence if the reflectivity is so small that 
it is sufficient to take into account only one reflection.

We shall give equations determining H, show in which 
cases (2) is correct, and find an approximate solution in the 
general case.

The integral equations of the problem.
We choose two points x1 and ,r2 on the 

face, respectively (cf. fig. 1), so that xx can
inner and outer sur-
be seen from ,r2 and

vice versa. That part of the outer sur
face which can be seen from .iq is denoted 
by A», while .42 means that part which 
cannot be seen from x2. denotes that 
part of the inner surface, which can be 
seen from x2. By ^(xjX^) we denote

the function 2 , where and z2 

are the angles shown in fig. 1, while /• is 
the distance between the points xx and

x2. It is equal to the fraction of the radiation from the vicinity 
of x\, which goes directly to unit of area around the point x2 or 
vice versa. The corresponding function for radiation between two 
points x2 and x2 of the outer surface is denoted by 9>(x2.r2).

The resulting radiation (both emitted and reflected) in unit 
of lime from unit of area near a point x is called /(xj.

1 C. Christiansen: Ann. d. Phys. u. Chem., Vol. 19, p. 267, 1883.
2 Clausing: Revue d’Oplique, Vol. 10, p. 353, 1931.
3 Saunders: Proc, of the Phys. Soc., Vol. 41, p. 569, 1929.
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We now express thal this resulting radiation is the sum of 
the emitted and the reilecled radiation.

'Phis leads to the following two integral equations:

(3)Cl

C0
‘ ) • V2 (*2) dx2
' / »’a;

/1 (.r 1 ) (p (.r j ,r2) dx\ + f Z2 ( (æ2 -c2 ) dx'2 j, (4)r2

C0

where as before index 1 refers to the inner, index 2 to the outer 
surface; dxr, dx2, and dx2 denote surface elements. We have 
made use of Kirchhoff’s law, according to which the reflectivity 

cof a surface with the radiation-constant c is 1------ . The absorp-
clivily is —.
c0

Let X2 denote the point where a straight line from .r2 to æi 
intersects the outer surface again (cf. fig. 1). It is then easily 
seen, that (4) can be rewritten as

Plie net energy-loss from the inner body is the difference between 
emitted radiation and absorbed radiation:

H = Aj q7’jf — 1 ' • ( dx} ( 72(.r2) 9?(æi.r2) dx2. (5)
co Ja, .’a;

Phe equations (3), (4a), and (5) determine H, when the geometry 
of the system is known. They cannot often be solved exactly.

We first want to emphasise that Christiansen’s formula (2) 
is valid, if the function

^(.r2) = \(p(xix2) dxt 
•'a;

(6)

(i. e. the fraction of the radiation from the vicinity of x2 which goes 
directly to the inner body) is independent of ,r2. In that case (.r2) 
can easily be found: From the definition ((5) it follows that
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= Ai, (7)

so that if <p(.r2) is constant, it must be equal to —A.
Ai . Az

In general —— is the mean value of ^(.x^) over the outer surface. 
A2 4

When <p(.x2) = -7—, it is seen that (3) and (4 a) are satisfied A2
by constant values of 7) (.Xj) and /2 (^'2)- Solving for 7j and 72 
and inserting in (5), we gel Christiansen’s formula (2).

Some very simple forms and symmetrical arrangements of 
the two bodies give a constant value of (p (,x2), e. g. two concentric 

spheres, two coaxial cylinders, or a sphere 
with a thin disk covering the equatorial plane 
(see below). In these eases Christiansen’s 
formula (2) is valid, but if 99 (.x2), and con
sequently 7i (.x’i) and 72 (x2), vary, this for
mula is no longer correct. A simple example 
that can be solved exactly, will show this: Let 
the outer surface be a sphere and the inner 
body a hemisphere with slightly smaller radius 
(cf. fig. 2). Formula (2) then is valid for the

radiation from the hemispherical surface and the plane surface 
separately (cf. p. 12). This means that II is a sum of two expres-

and —, respectively. This sum, however, is different from what is

obtained by using formula (2) for the radiation from the total inner 
A 3surface (putting - = in the denominator). One often gets a 4

belter approximation than (2) by separating the radiation in 
two or more parts of the form (2) as in this instance, e. g. when 
dealing with a Hat radiator placed near a wall. On page 13 one 
more example is given, where such a separation is exact.

Approximate solution of the integral equations.

We shall now show how lo lind approximate solutions of the 
equations (3), (4a), and (5) in the general case.

The crudest approximation—formula (1)—is obtained by dis



Nr. 8 7

regarding the integral ^4; ' ’ ' dxv in (4a); this integral represents 
the influence of the inner body on the radiation from the outer 
surface. By doing so one gels the solution (black-body radiation):

/2(.q) = (8)

which inserted in (3) gives

l,M = q ('/■;-■/■*) +<■„■/■ J. (9)

(5) then leads to the “zero111” approximation (1).
These expressions for /2 and 7X arc now inserted in the integral 

in (4 a) which was first disregarded. In the other terms of the 
equations (3), (4a), and (5) we put

/, (.q) = q ( - T‘) + q Tt, + /-(x-,) (II))

l2(x¡) = q 7’.J + ;/ix.). (11)

We then gel the following equations, where we have introduced 
the function (p (,r2) defined by (6):

/’(•t’i) = (1 — ( g (.r2) »/’(.rix2) dx2 ( 12)
\ Co/

g (-c2) = í 1 — --V ! Cj ( T\ — 7’2) • 99 (x\) + ( g (x2) (p(x2x2) dx2 j ( 13) 
\ Co/ | J

// = (7’{ — Tg) — ~ • j¡ g (x2) 9>(x’2) dx2. ' (14)

These equations can be solved without further approximations if 
the outer surface is a sphere. If it has the radius /?, it is seen that

^(.X’g.Vg) = COSZ2-COSZg

71 ■

1
4 ti R2

1
A2

(15)

2*
because cos z"2 = cos z2 = ——. The last term in equation (13)

therefore is a constant so that

f/(.r2) = — ■ Ci(Tj —7'^) • <9?(.r2) + const.}, (16)

where the constant is found by inserting (16) into (13). Making 
use of (7) it is seen that the constant is equal to
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Ai
A 2

(16a) 

Ci •

instead of the nominator. In this way we gel from (17)

(1«)

w
C2 . <P
Co

the first two terms of an expansion

of H in powers of We know that Christiansen’s formula (2) 
rl 2

is correct when (p is constant, i. e. — (<p)2. We therefore obtain 
a better result if we transform the expansion (17) into an ex
pression in which the denominator is expanded in powers of 
Ai
Ao

(14). We denote mean 
e. g.

// is then determined by means of 
values over the outer surface by a bar,

( tø(æ2)]2<fø2 
^2

according to (7).
The resulting expression

H = 1-41--

1 See, e. g., Courant and Hilbert: Mell oden der mathematischen Physik, 
Vol. 1.

I -L
This may be considered as 

......... „ A.

Ai
A 2

It is of course possible to proceed along these lines and first
MiVgel the term ol order 1>Y introducing the now determined 

first order expressions for /2(.r2) an<l 7) (.Tj) into the integral 
^¡•‘•d.Ti, in (4a). In the case of a surrounding sphere this— 
second—approximation can also be expressed in terms of simple 
mean values. Usually, however, (18) will be quite a sufficient 
approximation.

If the outer surface is not a sphere (18) will no longer be a con- 

sequent expansion until the first power of because (16) is not an 

exact solution of (13). In order to solve equation (13) in this case we 
make use of the following result from the theory of integral equations1:
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The integral equation

(/ (X2) ~ U <p (*G) + ^ - \ .7 (æi) 'P (X2X2) ^^2 , 
.M,

(19)

where u and b are constant and the “kernel” <p(x<2x2) is symmetrical 
in x2 and x2 (as in our case) has the solution

<7 (*t) = « ! <P (^2)
N

Åf(x2)-/i((x2)
(20)

In this expression h¡ (x2) and Á¡ (where i covers 0 to N) are the N -f- 1 
independent eigenfunctions and corresponding eigenvalues of the kernel 
ç?(x2x2); they are defined by the statement that they satisfy the homo
geneous integral equation:

(21)

furthermore 
i. e. :

the eigenfunctions must be normalised and orthogonal, 

( ht (x,) ■ hk (X,) dx, = I If Í = £. (22)

In our case \ tp (x2x2) dx'2 = 1 ; it then follows from (21) that there is
. Ja,

always a constant eigenfunction h0(x2); owing to the normalisation it

must have the value The corresponding eigenvalue is 20 = 1 ac- 
|/A2

cording to (21). In the solution (20) we treat this eigenfunction 
separately.

From (13), (19), (20), and (14) we get an expression for H similar 
to (17). Transforming to a form similar to (18), we finally get

with

// = A1C1(Tf-T‘) (23)

(24)

Generally the eigenfunctions cannot be found explicitly. However, it 
will often be a sufficiently good approximation to neglect the eigen
functions of higher order than the zero*11, because they have zeropoints 
and consequently give smaller contributions to k than the zero111. Below 
we shall treat an example where these contributions can be evaluated. 
If the eigenfunctions of higher order are neglected, (23) and (18) are 
identical.
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Two spheres. Examples.

We consider two spheres, one inside the other, with radii 1{ 
and r and placed excenlrically with a distance c between the cen

tres (cf. fig. 3). We evaluate the function <p(x2) 
by means of the following quite general rule: 
The cone made up by the tangents from ,r2 
to the inner surface cuts a sphere with 
radius 1 and centre in ,r2 in a certain closed 
curve; this curve is projected on the tangen
tial plane of the outer surface in .r2; the area 
enclosed by the projection is 7cIn the 
case of two spheres the projected curve is 
an ellipse, the area of which can easily be

found by simple geometry. For a point x2 on the outer sphere 
with a distance y from the centre of the inner sphere we find 
(for notation cf. fig. 3):

<P (.r2) = <7J(.'/) = I/2
CO S V =

r2 /?2 + p2-c2
2 ñy (25)

Integration then leads to

k is zero when c = 0; it is always positive and increases mono
tonously until c — H — r (the spheres touch each other). The 
value of k for c = Ii — r—denoted by A'inax—is given below for 

some values of — :r

R
r 8 4 2 1

^mu 10 2.5 0.5 0

When c # 0, (18) leads to a smaller loss of energy than 
Christiansen’s formula (2). A few examples will show the order 
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of magnitude of the difference. We lake — — 4; the difference r
between (2) and (18), when the spheres touch each other, is then

6.4 % if — =1 -- = °-5c0 c0

3.7 °/0 if - = 1 = 0.75
c0 c0

2.8 °/0 if — = 0.75 — = 0.75.
c0 c0

In Ihe same three cases the differences between the values given 
by the uncorrecled formula (1) and Christiansen’s formula (2) 
are 5.9 percent., 2.0 percent., and 1.5 percent., respectively.

(All numbers arc given in per cent, of the uncorrecled ex
pression (1).)

Plane disk inside sphere.
— (q?)2 ....We shall evaluate k — for a number ol different
(<?)“

positions and magnitudes of a plane disk inside a sphere in 
order to be able Io estimate k for any position and magnitude 
of the disk.

In the first case (cf. fig. 4) the disk is circular and placed
with its centre in the centre of the sphere.

Il can be proved—by integration—that 
for a point ,r2 with polar distance <9:

(p(.v2) = <p(&) = —— • cos & =
Qi Q2

r2cos &
|/7F+74 4- 2 r2R2 cos 2 &

(for notation cf. fig. 4). 
This leads to

(21)

decrease is slow when r is

hen r increases from 0 to /?. The 

small.
Next we consider a—not necessarily circular—disk which is 
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so small, that its magnitude only plays a minor role in deter

mining k.
that k is not far from ~Y The disk is situated so that the straight 

In the case above this corresponds to r being so small 
\ „ 1

3
line from the centre of the sphere to it is p-R in length, and the 
angle between this line and the direction perpendicular to the 
disk is w. Il may then be shown that

k = Á-! cos2 u + k2 sin* zz, (29)

where and k2 are the values of k in the two cases where the 
plate is respectively perpendicular to and parallel with the line
to the centre of the sphere. The values of kx and k2 are found
by integration :

/. 4
,-1 (3Ü)3(1-Jp2)5

A-2
1 1 1 + /) 5-3/r’ (31)4p °gcl — p 6(1—p2)2

Finally we consider a disk covering a parallel circle, the centre 
of which has a distance p-R from the centre of the sphere (fig. 5).

For a point ,r2 on the smaller of the two 
spherical caps we have:

<P (.1’2) = \ <P Ct2.T]) d.vx •’disk
(32)

In the same way it is seen that <p (.r2) is 
constant on the big spherical cap and equals 

the ratio of the area of the small spherical cap to the area of

the whole sphere, i.e. —- — . Consequently we lind

(33)

By means of the results from the special cases treated above 
the value of k may be estimated in most cases without further 
integration. As an example we consider a circular disk per-
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formula

d i ci ( 1 i f 2) *//

The approximation (18) leads lo

(35)

Christiansen’s formula (2) gives

(36)H

estimation of the 
(18) is used:

+ ~
1 + <‘i2

L+P
2

special case above (foronda 28). If the radius is 

/ccx? 5. The difference between the values of H given 

(18), respectively, is—for the three sets of values
C2— used on page 11
co

pendicular to the line from its centre to the centre of the sphere 

at a distance of —
4

lhe disk is small,
the corresponding

R from lhe centre of lhe sphere fp = If 

k 6 according to (30), while k = 1.3 for 
parallel circle. For values of its radius be

tween zero and the radius of the parallel circle we may 

estimate k from the way in which it is known to vary with radius 
in the first 
' R we find
4 
by (2) and

» ^'1 1
of — and — used on page 11—: 7 per cent., 4 per cent, and 3 per 

Co Co
cent., while the correction in Christiansen’s formula ((1)—(2)) 
amounts to 3 per cent., 1 per cent, and 0.8 per cent, in the cor
responding cases.

In the case of a parallel circle in a sphere treated above, 
// can be calculated exactly as a sum of two terms, each of lhe 
form (2), because 99 (x2) is constant on each of the two spherical 
caps. We will therefore use this case for an 
magnitude of lhe error made, when

The exact value of H is:

(7’î -TQ-
l + ci

1 _ 2 •1 —p
9
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With the usual three sets of values of and—(page 11) we 
lind in this special case:

The error in the formula (1) is approximately 30 per cent., 14 
per cent, and 11 per cent.

- Christiansen’s formula (2) is approximately 17 p2 
per cent., 11 p2 per cent, and 9 p2 per cent.

- the formula (18) is approximately 4 p2 per cent., 
1.3 p2 per cent, and 1.4 p2 per cent.

(All numbers in percentages of the simple expression (1).)

Two infinite circular cylinders.
In this case the formulae (23) and (24) ought to be used. We introduce 

ordinary cylindrical coordinates 0 and z for points on the outer cylinder. 
<7 (x2) is independent of z. Consequently the last term in equation (13) 
can at once be integrated with respect to z'. The result is:

17(0) = (l-;2)- hjTÍ-rj^W + ííÁo')- 1 ■ I sin°'- °| <70' j. (37) 

' t-o/ I *’o I z I J

The corresponding homogeneous integral equation is

h (0) = Â • ( h (O') • • I sin 01 d 0'

. ° . (3«)
= Z • Í - jj h (O') ■ sin °-~ d0' + jj h(O') • j sin 0 2” ° d0' .

Differentiation of this equation with respect to 0 shows that the eigen
function h (0) must satisfy the differential equation

(39)

the solutions of which are S’n P • 0 j.
cos 1 2 J

They must be periodic with period 2 tt,-whence it follows that 
|1 z

2
must be an integer. If we normalise the eigenfunctions according to 
the rule: ,.271

\ [/j(0)]MO = 1, (40)
•’o

we get the following series of independent eigenfunctions:
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(41)

with the corresponding eigenvalues

= 1-4/)’-. (/) = 1,2, •••). (42)

Besides these, we have the constant eigenfunction

1
h0 = —— with zn = 1.

¡2 77
(43)

Inserting these eigenfunctions and eigenvalues in (24) and the resulting 
k in (23), we find II. (It should be noted that the methods of normalisation 
used here and on page 9 arc different, because A2 now is infinite). If 
the zero-plane for 0 is taken to be the plane through the axes of the 
cylinders, sin pO ■<?(()) = 0 (odd function of 0). Denoting the radii of 
the inner and outer cylinder by r and /?, respectively, we find that 
the energy loss per unit of length from the inner cylinder is

wit 11

II =
2 77 rc, ( 7’í — 7'2)

(44)

(45)

The distance between the axes of the cylinders we denote by c. 
The function ^(x.^ may be determined by the method used
on page 10 through a rather simple geometrical consideration. With 
X denoting the distance from the point 0 to the axis of the inner cylinder 
we get:

7>(0)
r 7Î2 + ,r2 c*

2/? ’ .T2 (46)

From this we get by integration

(47)

The terms in the sum in (45) 
easily by contour integration).

can be evaluated by integration (most 
We find:

<f> cos p()\2 1 / y* 
. F / 4W (48)

When (47) and (48) are inserted in (45) we get
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It is seen that the terms from the higher eigenfunctions decrease rapidly 
with increasing order. Even the contribution from the second term in 

(49) may generally be neglected. If e. g. — = 0.75, the ratio between 
Co

the first and second term in (49) will be 13 —-, which is more than 13.

This result gives some justification for totally neglecting contri
butions from the other eigenfunctions than the zero111, i. e. for using 
formula (18) even in cases where the outer surface is not a sphere.

We again calculate the difference between the values of II given 
by (1) and (2) and by (2) and (18) for the usual three sets of values of 
c c 1— and — (page 11). We choose as an example r — R and c = R — r 
Co Co o
(the cylinders touch). By using formula (18) we neglect other terms 
in (49) than the first, ('file contribution from the second is in this case 
3—2 per cent, of the first). The result is that the difference between 
Christiansen’s formula (2) and our formula (18) is 7.4 per cent., 4.5 per 
cent, and 3.5 per cent., respectively, while the corresponding differences 
between (1) and (2) are 11 per cent, 4 per cent, and 3 per cent.

in case of a very 
with respect to I he 

‘g

The examples treated above show that 
unsymmetrical position of the inner body 
outer one, it is often so that very little is obtained by applying 
Christiansen’s formula in calculating the heat transfer, because 
the error made may be just as large or larger than the correction 
which the formula gives compared with the simple expression 
c1A1(7’/—ïg). We must conclude that if we aim at such an
accuracy that it is necessary to apply a corrected formula instead 
of (1), then (18) must be used in case of unsymmetrical position 
of the inner body. This is also practically possible, because the 

- 9 Í—\2
order of magnitude of the correction factor 7 z_ can often 

(?)
be estimated by simple geometrical or graphical methods.

Discussion of the assumptions made on page 3.

Equations analogous to (3), (4a), and (5) can easily be ob
tained in the most general case. The surface in the vicinity of 
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a point x has the absolute temperature 7’and a reflectivity denoted 
by (z a I r(z Tx) | i' a') and defined in the following way:

We consider monochromatic radiation of wavelength z, which 
is falling on a surface element dA. The direction of the incoming 
ray will be characterized by the angles i 
(angle of incidence) and a (azimuth) as 
shown on fig. 6. Of this radiation a certain 
fraction will be reflected so that it leaves 
the surface within a solid angle d(o', the 
principal direction of which is characterized 
by i' and a' (cf. fig. 6). If the reflection is 
completely diffuse the reflected radiation is
to the cosine law, i. e. the said fraction will be proportional to 
cos z' and independent of z, a, and a. In general we therefore 
denote the fraction reflected to dco' by

• (z a I r (A 7’.r) I i'a ) • cos z' do)'. (50)
7T ’ 1

fhe notation r(z 7’.r) is chosen in order to show that the reflectivity 
in general will depend on wavelength, temperature, and con
stitution of (he surface as well as on the angles, 'fhe factor ' is 
introduced for convenience.

file intensity of the emitted radiation (emitted radiation from 
unit of apparent area into unit of solid angle) in an arbitrary 
direction can be calculated by means of Kirchhoff’s law, if the 
reflectivity is known:

We shall write down an equation expressing that the resulting 
intensity of radiation in a closed cavity, the walls of which all 
have the same temperature 7’, must everywhere be equal to the 
intensity of radiation from a black body Æ0(Â7’). The resulting 
intensity from a point x in the direction (za) is the sum of the 
emitted intensity KT(1 Tx, id) and the reflected intensity, an 
expression for which can be written down by means of (50); 
the equation is:

Ko (Z T) = Kr (Â Tx, ia) -|- Ko (z 7’) • - -•.C (f d | r (Â Tx) | z a) cos i' da)' (51 ) 
•'solid angle 2zi

or

distributed according

D. Kgl. Danske Vidensk. Selskab, Mat.-lys. Medd. XXIV, X. 2
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e (2 Tx, i a) I\ T (>. Tx, z'a) 
~K^(ÅT)~

The black body intensity Å’o(2 7’) is given by Planck’s radiation 
formula (il is independent of the angles). The ratio between the 
emitted intensity from the surface in question and from a black 
body, denoted by e(Â7x, za) in (52), will be called the emissivity 
for the given surface, wavelength, temperature, and direction. 
(52) is valid for all wavelengths.

The ratio between the total hemispherical radiation of wave
length Â emitted from unit of area of the surface in question 
and from unit of area of a black body is:

E (z 7’x) =1 Í e (z Tx, i a) cos i do . (53)
»'solid angle 2/t

(For the so called “grey” surfaces treated above we have the 

equalities :
e (ÅTx, ia) = E(ÅTx) = -C

<’o

We further define the absorptivity a(ÅTx,ia), i. e. the fraction 
absorbed of radiation coming in from the direction (ia):

a(ÅTx,ia) = 1— 1 ( (ia 1r (Å Tx) | i'a') cos ¡'do'. (54)’
» solid angle 271

We now gel the equations analogous to (3) and (4a) by expressing 
that the resulting intensity of radiation K (iax) emerging from 
the point x on one of the surfaces in the direction (ia) is the 
sum of the emitted and reflected intensities:

/<i (z\ a^Tj) = KTi (ii ax) + \ (q cq I rx | z\ cq) /<2 (z2 a2.r2) • ç? (aq.i’a) z/.r2.

Æ2 (z2 a2x2) = KTt(i2 a2) + \ (i2a2 | r2 | z2a2) • [K1(i1 cqaq) — K2(i'> a2X2)\ ■ 

^(XiX^dx-! + (*2 a2 J r2 J l2 a2) ’ ^¿(¡2 a2. -r2) T (<T2*T2) <^2 •

1 If the so called Helmholtz’s reciprocity law (H. v. Helmholtz: Theoretische 
Physik, Vol. 6, p. 161, 190.3) is valid, we have: (/a|r|z'a') = (/'a'|r|/a), and 
consequently e = a.

• ^4a

(56)
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The heat transfer from the inner body is in analogy with (5) 
(for monochromatic radiation):

7 = Aln-E1- Ko (7\) — ti • \ dxx /<2 («2 «2*^2) • «i (G «i) • <P (æiæ2) dx%. (57) 
•% .’a;

(The emitted intensity of radiation and the reflectivity are still functions 
of (2 7'.r), although these variables have been omitted. To get the total 
radiation the equation (57) must be multiplied by rfz and integrated 
over all wavelengths. It is still assumed that the inner surface is convex 
and the outer one concave, and that both bodies are opaque; further
more the inner body must have the same temperature and emissivity 
everywhere if (57) is to be correct. Apart from this the equations arc 
quite general.)

Of course the equations can only be solved exactly in special 
cases, of which we are going to consider some in what follows, 
in order to exemplify the applicability of the method of integral 
equations.

(a) Non-validity of St elan-Boltzmann’s law.
If the reflectivity depends on wavelength and temperature, 

but not on angles and position (.r), the assumptions (3) on page 3 
arc not valid, but the rest is. In this case all the calculations in 
the first part of this paper hold true for the heal transfer caused 
by radiation in a narrow interval </A of wavelength (monochrom
atic radiation). (Fluorescence, etc., must of course be excluded.) 
The total heal transfer is then obtained by integration over all 
wavelengths. The formula analogous to (18) now is

//

(p)2 )
(•>«)

The ratios -1 andCo —2 from the case of “grey” bodies have been 
co

replaced by j (Â 7’j) and 7î2(â7’2), while c07’4 has been replaced
by ti/<o(A7’).

(b) N o n - V a 1 i d i ty of the c o s i n c 1 a w f o r th e i n n er s u r fa c e.
The inner surface is now assumed to relied in an arbitrary 

way, while the outer one still has a reflectivity that is independent 
2* 
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of the angles (completely diffuse reflection). Il is then easy to 
show from (55), (56), and (57), in a way similar to that which 
led to formula (18) or (58), that formulae analogous to (18) or

992— (o?)2
(58) hold, but the term —(^y — must be replaced by

where

and

, = —(y)2
<V’)2

i* U] (Â 7 ] / ] U])
U EiGTx) (p (.Ti Xz) dxi ;

(59)

(60)

(61 )'

ip and ip' are straightforward generalisations of the function
cf) (,r2) for emission and reflection, respectively. The definitions 
(52), (53), and (54) together with the definition of tp (rr1x2) show
that

y>(.r2) = /(x2) = 95(0*2) = Ai
Aa’

(62)

Il is worth noticing that Christiansen’s formula (2), perhaps 
modified in order to take into account a possible dependence 
of the reflectivity on wavelength and temperature, still holds for 
concentric spheres and coaxial cylinders, in which cases ip (;r2) 
and ip'(,r2) are constant. But y>(.r2) and ip'(,t2) are not necessarily 
constant in all cases where 99 (;r2) is so. They are not so, e. g., 
in the case treated on page 6 and 12, where the outer surface is 
a sphere and the inner body a disk covering the equatorial plane. 
In such cases Christiansen’s formula therefore is only correct, if 
the inner body radiates according to the cosine law.

(c) Non-validity of the cosine law for the reflection 
from the outer surface.
The case which gives the largest deviation from the uncor

rected formula (1) is the following: The system consists of two 
concentric spheres or coaxial cylinders of which the outer is 
reflecting specularly, Every ray which, coming from the inner

1 If Helmholtz’s reciprocity-law holds, then y(.r2) i/>'(x2).
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surface, is reflected on the outer one, will then hit lhe inner 
surface again. If especially the reflectivities are independent of 
wavelength and temperature, and the absorptivities are indepen
dent of lhe angles, the reduction in loss of energy due to reflection 
must therefore be the same as if lhe inner body was closely sur
rounded by the outer one. We then get in place of (2)

// = (63)

This formula is also due to Christiansen (footnote on page 4). 
It can easily be generalised to the case of wavelength- and 
temperature-dependent reflectivities.

As mentioned above, (63) is valid for concentric spheres and 
coaxial cylinders. But as soon as the spheres or cylinders arc 
placed a little excenlrically, or deformed somehow, the fraction 
of the reflected radiation that reenters on the inner surface will 
decrease considerably, and lhe loss of energy increases. Il is 
worth noticing that the loss of energy in case of specular reflection 
is the smallest possible in lhe concentric position, while it is 
largest in this position if lhe reflection is diffuse. The formulae 
(2) and (63) give the maximum and minimum values of the 
loss of energy, while excenlric position or unsymmetric form 
gives formulae like (18) lying between (2) and (63).

Il will often be a good approximation to assume that the 
outer surface is reflecting a certain fraction s of the reflected 
radiation completely diffusely, while the rest — (1—s) — is 
reflected specularly. Furthermore we assume that s and the total 
reflectivity is independent of lhe angle of incidence, lhe heal 
transfer between concentric spheres or coaxial cylinders can 
then easily be calculated. Either (55), (56), and (57) may be 
used (for the outer surface we may put (ia|r2|i a/) = ^1 —

—7-—- 7-ó(z — z’z) • <5 (a—(az + zr)) 1, where Ô (x— x') is 
I sin z-cos z J
Dirac’s ¿»-function), or we may al once write down analogous 
equations for the total resulting radiation from the two surfaces. 
We only give lhe result in case the radiation constants are in
dependent of wavelength and temperature and the absorptivity 
of the inner surface is independent of the angles:



22 Nr. 8

H = A1Cl(T{
.S 1 4~ Cj Ai

A 2
1 + Ci

• (64)

Phis shows that the heat transfer is nearer lo the valne for diffuse 
reflection, i. e. larger, than that obtained by simply adding ex
pressions of the form (2) and (63) in the ratio s: (1 —.s).

It has not been found possible to obtain a general formula 
in case of angle-dependent reflectivity of the outer surface.

(d) The temperature and emissivity of the outer body 
varies over the surface. Resulting radiation field 
within a closed cavity.

Let all assumptions made on page 3 be correct, except that 
7a and c2 are functions of ,r2.

We only treat the case of a very small inner body 

corresponding to the “zero111” approximation (1). Consequently 
we must solve the equation for /2(.r2) without contributions from 
an inner body. For convenience we omit the index 2 in /2, ,r2, 
c2, etc.:

/(a.) = + (65)

This equation is a straightforward generalisation of (4a) or 
specialisation of (56). If T is a constant, it has of course the 
solution /(.r) = c07’4 irrespective of the values of c(.r) and the 
form of the enclosure (black body radiation). In general, how
ever, it can only be solved numerically, e. g. by replacing it by 
a number of linear equations corresponding to the required 
accuracy. If the cavity is a sphere, it can be solved exactly, for 

in this case we have ^(.r.r') = , so that (65) lakes the form

/(.r) = c(x)-7'(;v)4 + (l--^) 7 (66)
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where I (&•') dx' is the mean value of /(.r) 
A

over I he

surface. 'Faking mean values of the terms in (66), we get 

whence

which inserted in (66) leads Io

/(•r)
c7’’
--+e(.r)

(67)

(68)

(69)

From this result the heal exchange with a small body with uniform 
temperature 7\ and radiation constant Cj can be calculated when
lhe contributions from this body Io lhe radialion field can be 

neglected By means of (69) and (5) page 5 we gel

instead of (1):

// = Ax Ci
?,4 1 l(x)-cp(x)

. 1 C0 (p(x)
=

11 • C] • 7’4 cT* 1 c7’4<p ! 1 c 7’4 C(p
1 1 c c0 ÿ c0 c <p

(70)

We may define a “resulting radiation temperature” 7’0 of lhe 
sphere with respect to the small inner body as the uniform 
temperature which lhe sphere ought to have if it were black 
and were to exchange lhe same amount of heat as (70) with 
the inner body, i. e. we put

llx = AyCi{T\-T^, (71)
whence

y,i 1 1y _ A- 1 - 1 c7’4 cy
co (p c C0 (p Co C (p '

Phis is strictly correct for a sphere and will probably be a good 
approximation in many other cases. If lhe temperature does not 
vary loo much, it may be a sufficient approximation to use the 
temperatures in C in (72) instead of lhe fourth powers of lhe 
absolute temperatures.
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(e) Cavities in a surface.
A cavity the walls of which have a certain emissivity, may 

be replaced by a surface covering the cavity, but with another 
emissivity, which generally will vary over the surface and depend 
on the direction of emission. The method of integral equations 
can also be used

Fig. 7.

to find this apparent emissivity.
We assume that the walls of the cavity are 

reflecting diffusely and independently of wave
length, temperature, and direction. The radia
tion constant is Cj and the uniform tempera
ture 7\; the emitted intensity of radiation is 

then — c/rj in all directions. We are going to 

tind the resulting radiation intensity /<3(.x3z3a3) 
in an arbitrary point x3 on the replacing sur

face A3 and in an arbitrary direction (z3, a3) (cf. fig. 7). First, we 
have that the intensity sought for is equal to the resulting inten
sity from the corresponding point .xx (cf. tig. 7):

^3 (-r3 z3 as) — k i (,ri) (73)

A’i (.Ti) is independent of direction owing to the completely 
diffuse reflection and may be found from an integral equation 
expressing it as a sum of emitted and reflected radiation as usual:

(.x'Jç^Xpx'Jcfaq. (74)

Il is seen that only if the function

is independent of .xx, we tind a constant value of A1(.x1), and 
only in this case, therefore, K3 is independent of .x3 and the direc
tion (z’3a3).

If (p (.Xj) is constant, the value of it may be found, because

I dXi ( (p (.X!.x3) dx3 = \ dx3 \ (p (.Xi.x3) dxx = A3. (76)
•’>1, ¿4, «U, <4,

From this and (75) it follows that
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9>(.Ti) = 1 —(77)

(In (76) it is assumed, that A3 is plane.)
With this value of (pÇxj), K3 may be found from (73) and (74):

We define the apparent radiation constant c3 by pulling

K, = |c.,7’í. (79)

(80)

3 0, as it must, because we then get

= whence

(79) and (78) then lead to

1 = 1 . 4i -,

C.3 G Ai

3

.1

AIt is seen that c3->cfl, if > 
Ai 

an artificial “black body”.
If 99 (.rx) is not constant, (74) may be solved numerically or 

by iteration, 99 (.tj) is constant, if the cavity is a spherical cap 
(cf. page 12). If the distance from the centre of the sphere with 
radius /? to the plane A3 is p-R (p positive to the interior of the

. x Acavity), we gel
i

_L 1 1 ±p j_ 1 .1 p
C3 Cl 2 Co 2

(-1 </><!). (81)

The results and methods used in this section and section d may 
be useful in estimating the deviations of the radiation from a 
cavity from black body radiation.

Summary. The net loss of energy suffered by a radiating 
body entirely surrounded by another body of different temperature 
is investigated with special respect to its dependence on the 
form and mutual position of the bodies. Integral equations are 
given which determine the heal transfer ((3), (4a), and (5) for 
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“grey” radiation, and (55), (56), and' (57) in the general ease). 
The equations for “grey” radiation are solved approximately and 
a formula for the heat transfer is given — (18) — and applied 
to several examples. The radiation between surfaces which are 
not grey is treated in some special cases. On page 22 (section d) 
the case of variation in temperature on the outer body is treated, 
and formulae for the radiation field inside a sphere and for the 
heal exchange with a small body inside a sphere are obtained 
(formulae (69) — (72)). Finally, in section (e), page 24, equations 
determining the apparent emissivity of a cavity are obtained and 
solved for a cavity shaped as a spherical cap.

The methods and results may be of some interest in the 
heating technique, the illumination technique, and optical pyro
metry.
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